Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Chinese Pharmacological Bulletin ; 36(9):1309-1316, 2020.
Article in Chinese | EMBASE | ID: covidwho-2323869

ABSTRACT

Aim To explore the active compound of Maxingganshi decoction in treatment of novel coronavirus pneumonia(COVID-19). Methods With the help of TCMSP database, the chemical components and action targets of ephedra, almond, licorice, and gypsum in Maxingganshi decoction were searched, and then a C-T network, protein interaction analysis, GO functional enrichment analysis, and KEGG pathway enrichment were constructed. Analysis was performed to predict its mechanism of action. Results A total of 120 compounds in Maxingganshi decoction corresponded to 222 targets. PTGS2, ESR1, PPARG, AR, NOS2, NCOA2 acted on PI3K-Akt signaling pathway, TNF signaling pathway, IL-17 signaling pathway, T cell receptor signaling pathways, etc. The results of molecular docking showed that the affinity of quercetin, kaempferol, glabridin and other core compounds was similar to recommended drugs in treatment of COVID-19. Conclusions The active compounds of Maxingganshi decoction can target multiple pathways to achieve the therapeutic effect of COVID-19.Copyright © 2020 Publication Centre of Anhui Medical University. All rights reserved.

2.
Neuroendocrinology Letters ; 42(1):13-21, 2021.
Article in English | EMBASE | ID: covidwho-2299689

ABSTRACT

OBJECTIVES: The beneficial effects of ozone therapy consist mainly of the promotion of blood circulation: peripheral and central ischemia, immunomodulatory effect, energy boost, regenerative and reparative properties, and correction of chronic oxidative stress. Ozone therapy increases interest in new neuroprotective strategies that may represent therapeutic targets for minimizing the effects of oxidative stress. METHOD(S): The overview examines the latest literature in neurological pathologies treated with ozone therapy as well as our own experience with ozone therapy. The effectiveness of treatments is connected to the ability of ozone therapy to reactivate the antioxidant system to address oxidative stress for chronic neurodegenerative diseases, strokes, and other pathologies. Application options include large and small autohemotherapy, intramuscular application, intra-articular, intradiscal, paravertebral and epidural, non-invasive rectal, transdermal, mucosal, or ozonated oils and ointments. The combination of different types of ozone therapy stimulates the benefits of the effects of ozone. RESULT(S): Clinical studies on O2-O3 therapy have been shown to be efficient in the treatment of neurological degenerative disorders, multiple sclerosis, cardiovascular, peripheral vascular, orthopedic, gastrointestinal and genitourinary pathologies, fibromyalgia, skin diseases/wound healing, diabetes/ulcers, infectious diseases, and lung diseases, including the pandemic disease caused by the COVID-19 coronavirus. CONCLUSION(S): Ozone therapy is a relatively fast administration of ozone gas. When the correct dose is administered, no side effects occur. Further clinical and experimental studies will be needed to determine the optimal administration schedule and to evaluate the combination of ozone therapy with other therapies to increase the effectiveness of treatment.Copyright © 2021 Neuroendocrinology Letters.

3.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269814

ABSTRACT

Background: SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide;therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives: This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method(s): We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Result(s): We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion(s): Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.Copyright © 2021

4.
Profilakticheskaya Meditsina ; 26(1):114-119, 2023.
Article in Russian | EMBASE | ID: covidwho-2257854

ABSTRACT

The COVID-19 pandemic is a global healthcare crisis. The frequency of acute kidney injury (AKI) in patients with COVID-19 and the features of its diagnostics indicate the relevance of the topic. Objective of the review. To analyze mechanisms of AKI development in patients with COVID-19 and provide support for methodological approaches to ensure its timely diagnosis. Material and methods. The methodological approaches used in the review are based on a sufficient number of literature sources (more than 150 sources), of which 34 articles are included in the review: 15 original studies, 12 reviews, 2 meta-analyses, 5 re-ports, and letters to the editor. Results. The mechanisms of AKI development and progression, including the direct cytotoxic effect of the SARS-CoV-2 virus, dis-ruption of metabolic pathways of renal blood flow regulation, and the complement system, are considered. We also analyzed AKI risk factors in patients with acute respiratory distress: diabetes mellitus, chronic kidney injury, arterial hypertension with im-paired NOx production, and eNOS expression as significant factors of vasodilation in renal microcirculatory vessels. The analy-sis showed the most perspective directions in the diagnostics of AKI functional stages. These include molecular test methods (pro-teome and metabolome) in blood and urine;they helped define damage markers to proximal tubules and the glomerular system, thus improving the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis. Conclusion. The Coronado study aims to assess the phenotypic features of patients with diabetes mellitus and COVID-19. More specific markers of the acute kidney injury functional stage were determined;these markers will improve the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis.Copyright © 2023, Media Sphera Publishing Group. All rights reserved.

5.
Istanbul Tip Fakultesi Dergisi ; 86(1):1-6, 2023.
Article in English | Scopus | ID: covidwho-2280525

ABSTRACT

Objective: COVID-19 is a serious respiratory and vascular disease that impairs the protective function of the endothelial barrier. Endothelial nitric oxide synthase (eNOS), the most important isoform for nitric oxide (NO) production, is mostly expressed in endothelial cells. Therefore, this study aims to evaluate whether eNOS G894T and variable tandem repeat number (VNTR) functional variants show predisposition to developing COVID-19. Materials and Methods: The study includes a total of 384 subjects (284 COVID-19 patients and 100 healthy controls). Two eNOS gene variants (G894T and VNTR) were genotyped using the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) methods, with the results being evaluated using statistical methods. Results: A significant association has been identified between eNOS G894T and COVID-19. For the eNOS G894T variant, the T/T genotype (p=0.035) and T allele carriers (p=0.030) appear to have an increased risk of developing COVID-19. The eNOS G894T G/G genotype (p=0.030) was more common in the control group compared to the patient group. No significant difference was found between groups regarding the eNOS VNTR genotype and allele frequencies (p>0.05). The genotypes of the patient and control groups for these variants were in Hardy-Weinburg equilibrium (HWE). Conclusion: These results provide evidence supporting the hypothesis that the eNOS G894T variant is associated with an increased risk of developing COVID-19 in the Turkish population. These findings may lead to the emergence of new treatment options. Further research is required to understand the molecular mechanisms involved in the pathogenesis of the disease. © 2023 The authors.

6.
Journal of Hypertension ; 41:e88, 2023.
Article in English | EMBASE | ID: covidwho-2244622

ABSTRACT

Objective: COVID19 is associated with vascular inflammation. IFN-alpha (IFNa) and IFN-lambda3 (IFNl3) are potent cytokines produced in viral infections. Their effects involve interferon-stimulated genes (ISGs) and may influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFN-activated pathways Design and methods: Human ECs were stimulated with S1P (1 mg/mL), IFNa (100ng/mL) or IFNl3 (100IU/mL). Because ACE2, ADAM17 and TMPRSS2 are important for SARS-CoV-2 infection, we used inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 mM). Gene and protein expression was investigated by real-time PCR and immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive (LinA3) mice and in ISG15-deficient (ISG15KO) mice. Results: S1P increased expression of IFNa (3-fold), IFNl3 (4-fold) and ISGs (2-fold) in EC (p < 0.05). EC responses to IFNa (ISG15: 16-fold) were greater than to IFNl3 (ISG15: 1.7-fold) (p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFa (6.2-fold) and IL-1b (3.3-fold), effects that were amplified by IFNs. Only the ADAM17 inhibitor marimastat inhibited S1P effects. IFNa and IFNl3 increase protein expression of ADAM17 (27%) and TMPRSS2 (38%). No changes were observed on ACE2 expression. This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). EC production of IL-6 was increased by IFNa (1,230pg/mL) and IFNl3 (1,124pg/mL) vs control (591pg/mL). Nitric oxide generation and eNOS phosphorylation (Ser1177) were reduced by IFNa (40%) and IFNl3 (40%). Vascular functional responses demonstrated that endothelium-dependent vasorelaxation (% Emax) in vessels from WT-mice stimulated with IFNa (67%) and IFNl3 (71%) were reduced vs control (82%) (p < 0.05). Responses were not altered in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNa (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN) (p < 0.05). Conclusions: In ECs, S1P, IFNa and IFNl3 increased ISG15 and IL-6 by mechanisms dependent on ADAM17. IFNs amplifies endothelial cell inflammatory responses and induced vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This may be especially important in the presence of cardiovascular risk factors, including hypertension.

7.
Profilakticheskaya Meditsina ; 26(1):114-119, 2023.
Article in Russian | EMBASE | ID: covidwho-2240432

ABSTRACT

The COVID-19 pandemic is a global healthcare crisis. The frequency of acute kidney injury (AKI) in patients with COVID-19 and the features of its diagnostics indicate the relevance of the topic. Objective of the review. To analyze mechanisms of AKI development in patients with COVID-19 and provide support for methodological approaches to ensure its timely diagnosis. Material and methods. The methodological approaches used in the review are based on a sufficient number of literature sources (more than 150 sources), of which 34 articles are included in the review: 15 original studies, 12 reviews, 2 meta-analyses, 5 re-ports, and letters to the editor. Results. The mechanisms of AKI development and progression, including the direct cytotoxic effect of the SARS-CoV-2 virus, dis-ruption of metabolic pathways of renal blood flow regulation, and the complement system, are considered. We also analyzed AKI risk factors in patients with acute respiratory distress: diabetes mellitus, chronic kidney injury, arterial hypertension with im-paired NOx production, and eNOS expression as significant factors of vasodilation in renal microcirculatory vessels. The analy-sis showed the most perspective directions in the diagnostics of AKI functional stages. These include molecular test methods (pro-teome and metabolome) in blood and urine;they helped define damage markers to proximal tubules and the glomerular system, thus improving the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis. Conclusion. The Coronado study aims to assess the phenotypic features of patients with diabetes mellitus and COVID-19. More specific markers of the acute kidney injury functional stage were determined;these markers will improve the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis.

8.
Acta Biomedica Scientifica ; 7(6):51-70, 2022.
Article in Russian | Scopus | ID: covidwho-2232198

ABSTRACT

This literature review presents the role of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO), as well as arginine, the enzyme substrate, in the disease of metabolic syndrome and COVID-19 (SARS-CoV-2 virus). Metabolic syndrome is a combination of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension. Ithas been shown thatin elderly people, patients withobesity, metabolic syndrome, type 2 diabetes mellitus (DM2), and patients with COVID-19, endothelial dysfunction (ED) and vascular endothelial activation are detected. ED is the main cause of a number of pathological conditions during the development of COVID-19 and earlier in patients with metabolic syndrome, while a sharp drop in the level ofnitric oxide (NO)is detecteddue to a decrease in the expression andactivity ofeNO synthase and enzyme depletion, which leads to a violation of the integrity of blood vessels, that is, to vasoconstrictive, inflammatory and thrombotic conditions, followedby ischemia oforgans andedema oftissues. It shouldbe notedthat metabolic syndrome, DM2, hypertension and obesity, in particular, are age-related diseases, and it is known that blood glucose levels increase with age, which reduces the bioavailability of NO in endothelial cells. Defects in the metabolism of NO cause dysfunction in the pulmonary blood vessels, the level of NO decreases, which leads to impaired lung function and coagulopathy. The review presents possible mechanisms of these disorders associated with ED, the release of eNO synthase, changes in phosphorylation and regulation of enzyme activity, as well as insulin resistance. A modern view of the role of the polymorphism of the eNO synthase gene in the development of these pathologies is presented. To increase the level of endothelial NO, drugs are offered that regulate the bioavailability of NO. These include arginine, agonist NO – minoxidil, steroid hormones, statins, metformin. However, further research and clinical trials are needed to develop treatment strategies that increase NO levels in the endothelium. © 2022 Scientific Centre for Family Health and Human Reproduction Problems. All right reserved.

9.
Hum Cell ; 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2234148

ABSTRACT

The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.

10.
Cell Signal ; 101: 110496, 2023 01.
Article in English | MEDLINE | ID: covidwho-2235843

ABSTRACT

Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.


Subject(s)
Neoplasms , Nitric Oxide , Humans , Nitric Oxide/metabolism , Neoplasms/pathology , Signal Transduction , Apoptosis , Superoxides/metabolism
11.
J Pharm Anal ; 12(6): 839-851, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2210929

ABSTRACT

Glycyrrhizae Radix et Rhizoma, a traditional Chinese medicine also known as Gan Cao (GC), is frequently included in clinical prescriptions for the treatment of pneumonia. However, the pharmacological components of GC for pneumonia treatment are rarely explored. Gan An He Ji oral liquid (GAHJ) has a simple composition and contains GC liquid extracts and paregoric, and has been used clinically for many years. Therefore, GAHJ was selected as a compound preparation for the study of GC in the treatment of pneumonia. We conducted an in vivo study of patients with pneumonia undergoing GAHJ treatments for three days. Using the intelligent mass spectrometry data-processing technologies to analyze the metabolism of GC in vivo, we obtained 168 related components of GC in humans, consisting of 24 prototype components and 144 metabolites, with 135 compounds screened in plasma and 82 in urine. After analysis of the metabolic transformation relationship and relative exposure, six components (liquiritin, liquiritigenin, glycyrrhizin, glycyrrhetinic acid, daidzin, and formononetin) were selected as potential effective components. The experimental results based on two animal pneumonia models and the inflammatory cell model showed that the mixture of these six components was effective in the treatment of pneumonia and lung injury and could effectively downregulate the level of inducible nitric oxide synthase (iNOS). Interestingly, glycyrrhetinic acid exhibited the strongest inhibition on iNOS and the highest exposure in vivo. The following molecular dynamic simulations indicated a strong bond between glycyrrhetinic acid and iNOS. Thus, the current study provides a pharmaceutical basis for GC and reveals the possible corresponding mechanisms in pneumonia treatment.

12.
Molecules ; 27(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2115975

ABSTRACT

Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.


Subject(s)
COVID-19 , Nitric Oxide , Humans , Nitric Oxide/metabolism , Hemoglobins/metabolism , Endothelium, Vascular/metabolism
13.
Tohoku J Exp Med ; 258(3): 167-175, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2089530

ABSTRACT

The prevalence of Alzheimer's disease (AD) has been rapidly increasing worldwide. We have developed a novel angiogenic therapy with low-intensity pulsed ultrasound (LIPUS), which is effective and safe in animal models of AD and vascular dementia. We performed two trials of LIPUS therapy for AD (mild cognitive impairment due to AD and mild AD); a roll-in open trial for safety, and a randomized, double-blind, placebo-controlled (RCT) trial for efficacy and safety. The LIPUS therapy was performed for whole brain through the bilateral temporal bones for one hour 3 times a week as one session under the special conditions (1.3 MPa, 32 cycles, 5% duty cycle) we identified. The LIPUS therapy was performed for one session in the roll-in trial, and 6 sessions in the RCT trial with 3-month intervals for 1.5 years. The primary endpoint was ADAS-J cog scores. The RCT trial was terminated prematurely due to the COVID-19 pandemic. In the roll-in trial (N = 5), no adverse effects were noted. In the RCT trial (N = 22), the worsening of ADAS-J cog scores tended to be suppressed in the LIPUS group compared with the placebo group at week 72 (P = 0.257). When responders were defined as those with no worsening of ADAS-J cog scores at week 72, the prevalence was 50% (5/10) and 0% (0/5) in the LIPUS and placebo groups, respectively (P = 0.053). No adverse effects were noted. These results suggest that the LIPUS therapy is safe and tends to suppress cognitive impairment although a next pivotal trial with a large number of subjects is warranted.


Subject(s)
Alzheimer Disease , COVID-19 , Animals , Humans , Alzheimer Disease/therapy , Alzheimer Disease/psychology , Pilot Projects , Pandemics , Brain/diagnostic imaging , Ultrasonic Waves
14.
Algae ; 37(3):239-247, 2022.
Article in English | ProQuest Central | ID: covidwho-2055979

ABSTRACT

Enzyme-assisted hydrolysis is frequendy used as a cost-effective and efficient method to obtain functional ingredients from bioresources. This study involved die enzyme-assisted hydrolyzation and purification of fucoidan from Ecklonia maxima stipe and die investigation of its anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Fucoidans of Viscozyme-assisted hydrolysate from E. maxima (EMSFs) harvested in Jeju, Korea. Structural and chemical characterizations were performed using fourier transform infrared spectroscopy, scanning electron microscope, and monosaccharide analysis. Among fucoidans, EMSF6 was rich in fucose and sulfate and had a similar structural character to commercial fucoidan. EMSF6 showed a strong inhibitory effect on nitric oxide generation in LPS-induced RAW 264.7 cells and significantly decreased die production of LPS-induced pro-inflammatory cytokines, including interleukin-6, interleukin-1 p, and tumor necrosis factor a. The anti-inflammatory potential of EMSF6 was mediated through the down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression. Thus, fucoidans from&temppound;. maxima stipe are promising candidates for functional food products.

15.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2049630

ABSTRACT

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

16.
Iranian Journal of Pharmaceutical Research ; 21(1), 2022.
Article in English | EMBASE | ID: covidwho-2033387

ABSTRACT

Donepezil hydrochloride is an acetylcholine esterase inhibitor studied and approved to treat Alzheimer’s disease (AD). However, this drug can have positive therapeutic potential in treating different conditions, including various neurodegenerative disorders such as other types of dementia, multiple sclerosis, Parkinson’s disease, psychiatric and mood disorders, and even infectious diseases. Hence, this study reviewed the therapeutic potential of this drug in treating Alzheimer’s and other diseases by reviewing the articles from databases including Web of Science, Scopus, PubMed, Cochrane, and Science Direct. It was shown that donepezil could affect the pathophysiology of these diseases via mechanisms such as increasing the concentration of acetylcholine, modulating local and systemic inflammatory processes, affecting acetylcholine receptors like nicotinic and muscarinic receptors, and activating various cellular signaling via receptors like sigma-1 receptors. Despite many therapeutic potentials, this drug has not yet been approved for treating non-Alzheimer’s diseases, and more comprehensive studies are needed.

17.
Journal of Hypertension ; 40:e29, 2022.
Article in English | EMBASE | ID: covidwho-1937690

ABSTRACT

Objective: COVID19-associated immunopathology is associated with increased production of interferon (IFN)-alpha (IFNα) and lambda3 (IFNL3). Effects of IFNs are mediated by interferon-stimulated genes (ISGs) and influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. Increasing evidence indicates vascular inflammation in cardiovascular sequelae of COVID19. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFNα and IFNL3. Design and method: Human ECs were stimulated with S1P (1 μg/mL), IFNα (100ng/mL) or IFNL3 (100IU/mL). Because ACE2, metalloproteinase domain-17 (ADAM17) and type-II transmembrane serine protease (TMPRSS2) are important for SARS-CoV-2 infection, cells were treated with inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 μM). Gene and protein expression was investigated by real-time PCR immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive mice and in ISG15-deficient (ISG15KO) mice. Results: EC stimulated with S1P increased expression of IFNα (3-fold), IFNL3 (4-fold) and ISG (2-fold)(p < 0.05). EC exhibited higher responses to IFNα (ISG15: 16-fold) than to IFNL3 (ISG15: 1.7-fold)(p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFα (6.2-fold) and IL-1β (3.3-fold), effects that were maximized by IFNs. Only marimastat inhibited S1P effects. IL-6 was increased by IFNα (1,230pg/mL) and IFNL3 (1,124pg/mL) vs control (591pg/ mL). This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). Nitric oxide production and eNOS phosphorylation (Ser1177) were reduced by IFNα and (40%) and IFNL3 (40%). Reduced endothelium relaxation maximal response (%Emax) was observed in vessels from WTmice stimulated with IFNα (67%) and IFNL3 (71%) vs control (82%)(p < 0.05) but not in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNα (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN, p < 0.05). Conclusions: In ECs, S1P, IFNα and IFNL3 increased ISG15 and IL-6, processes that involve ADAM17. Inflammation induced by S1P was amplified by IFNs. IFNs induce vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This is especially important in the presence of cardiovascular risk factors, including hypertension.

18.
Nephrology Dialysis Transplantation ; 37(SUPPL 3):i205-i206, 2022.
Article in English | EMBASE | ID: covidwho-1915690

ABSTRACT

BACKGROUND AND AIMS: Replication of the enveloped SARS-COV2 virus can alter lipidomic composition and metabolism of infected cells [1]. These alterations commonly result in a decline in HDL, total cholesterol and LDL, and an increase in triglyceride levels in COVID-19 patients. Furthermore, the 'cytokine storm' subsequent to release of inflammatory cytokines can severely impair lipid homeostasis. Importantly, decreased HDL-cholesterol correlates with severity of COVID-19 infection and represents a significant prognostic factor in predicting poor clinical outcomes [2]. Similarly, it has been observed that COVID-19 patients' recovery is accompanied by a rise in serum HDL levels. Pharmacological intervention that aims to restore ApoA-1 or functional HDL particles may have beneficial roles for clinical outcome of COVID-19 patients and has recently been approved for compassionate use [3]. SARS-CoV 2 spike proteins S1 and S2 can bind free cholesterol and HDL-bound cholesterol, facilitating virus entry by binding the ACE2 co-receptor Scavenger Receptor-BI (SR-BI) [4]. When activated at the trans-membrane level, SR-BI signalling culminates in Ser1173-eNOS phosphorylation with both anti-inflammatory and anti-apoptotic effect. We hypothesized that SARS-COV2 binding promoted SR-BI internalization, so that it could not exert its essential protective function. Therefore, the aim of this study is to evaluate the effects of CER-001, a mimetic HDL, in antagonizing this process. METHOD: Endothelial and tubular (RPTEC) cells were exposed to S1, S2 and S1 + S2 (50-250 nM) with or without CER-001 (CER-001 50-500 ug/mL) and cholesterol (10-50 uM). Apoptosis tests (MTT and AnnV/PI) were performed. Internalization of SR-BI, ACE2 with S1 and activation of eNOS was evaluated by FACS analysis. SR-BI and ACE2 expression were evaluated on kidney biopsies from COVID-19 patients. RESULTS: At concentrations used, the exposition of S1, S2 and S1 + S2 in the presence of CER-001 and cholesterol did not induce apoptosis of endothelial cells and RPTEC. Endothelial and tubular cells stimulated by S1, in presence of cholesterol, showed an increased intracellular level of SR-BI and ACE-2, with significantly reduced eNOS phosphorylation compared to baseline (P < 0.05). The treatment with CER-001 reversed trans-membrane SR-BI levels and eNOS phosphorylation to baseline values. The detection of S1 spike protein by endothelial cells immunohistochemistry revealed an increased level in S1-exposed cells with cholesterol and reduced S1 intracellular positive staining in CER-001-exposed cells (P < 0.05). Interestingly, S1-exposed cells without cholesterol appeared not to be capable of mediating S1 spike protein internalization. Consistent with in vitro results, analysis of renal biopsies from COVID-19 patients with proteinuria showed increased SR-BI and ACE-2 cytoplasmic signals and reduced expression at the apical domain of injured tubules. CONCLUSION: Our data confirmed the key role of lipid profile in SARS-COV2 infection, evaluating the molecular signalling involved in HDL metabolism and inflammatory processes, and could offer new therapeutic strategies for COVID-19 patients. (Figure Presented).

19.
Pharmacia ; 69(2):509-516, 2022.
Article in English | EMBASE | ID: covidwho-1896948

ABSTRACT

COVID-19 leads to disruption of the blood coagulation system, to thrombosis, hypercoagulability, as a result, to an increased risk of strokes and heart attacks. During COVID-19, endothelial dysfunction develops associated with NO deficiency with decrease in the level of SH compounds. Tiazotic acid (Thiotriazoline) has immunomodulatory, anti-inflammatory, antioxidant, anti-ischemic, cardio- and endothelioprotective, antiplatelet, hepatoprotective activity. Our studies conducted at the National Research Medical Center “University Clinic of ZSMU” with the participation of 57 patients (from 30 to 65 years old) with post-COVID syndrome, who received thiotriazol with basic therapy in either tablets (200 mg each) or suppositories Dalmaxin (0.2 g each) twice a day for 30 days. Inclusion criteria for the study were a positive PCR test for COVID-19;if the PCR test was negative, then the presence of IgM COVID-19 or IgG COVID-19 (with radiologically confirmed pneumonia). The following biochemical parameters were studied: C-reactive protein - by immunoturbodimetric method;D-dimer - by enzyme immunoassay;ferritin - by immunochemiluminescent method;endothelial NO-synthase (eNOS) - by ELISA method;alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin;international normalized ratio (INR) and determination of platelet aggregation. During treatment with thiotriazoline, significant increase in the eNOS content was recorded, which indicated the presence of endotheliopro-tective activity of the drug. Thiotriazoline significantly reduced the level of D-dimer in the blood of patients, and also led to the normalization of INR. The established effects testified to the presence of antiplatelet and fibrinolytic action of thiotriazoline and its ability to reduce the risks of heart attacks and strokes in post-COVID syndrome. Thiotriazoline led to an objective improvement in general clinical parameters in patients with post-COVID syndrome, complaints of palpitations disappeared, blood pressure stabilized.

20.
Fertility and Sterility ; 116(3 SUPPL):e96, 2021.
Article in English | EMBASE | ID: covidwho-1880470

ABSTRACT

OBJECTIVE: To describe the histopathological features of penile tissue of patients who recovered from symptomatic COVID-19 infection and subsequently developed severe erectile dysfunction (ED). MATERIALS AND METHODS: After providing informed consent, penile tissue was collected from patients undergoing surgery for inflatable penile prosthesis due to severe ED under an IRB approved protocol. Two specimens were obtained from men with a history of COVID-19 infection and two specimens were obtained from men with no history of infection (all men tested negative immediately before surgery). Tissue from COVID-19 (+) and COVID-19 (-) specimens were imaged with transmission electron microscopy (TEM). The tissue was analyzed for viral RNA using polymerase chain reaction (PCR) and viral spike protein. Formalin-fixed paraffinembedded tissues were stained with hematoxylin and eosin (H&E) and subjected to immunohistochemical analysis for endothelial Nitric Oxide Synthase (eNOS) expression (marker of endothelial function). Endothelial progenitor cells (EPC) function was assessed ex vivo by determination of endothelial colony forming units from blood samples collected from the COVID-19 (+) and COVID (-) men with severe ED. RESULTS: TEM revealed extracellular viral particles ∼100 nm in diameter, with prominent peplomers (spikes), and electron-dense dots of the nucleocapsid inside the particles near penile vascular endothelial cells of the COVID-19 (+) patients. Notably, viral particles were not detected in tissue obtained from COVID-19 (-) men. COVID-19 RNA was detected in both the penis biopsy samples from men with a history of COVID, but not in the samples from COVID-19 (-) men. There were no significant differences in H&E staining between COVID-19 (+) and COVID-19 (-) men and viral spike protein was not detected. Immunohistochemistry showed decreased eNOS expression in the corpus cavernosum of COVID-19 (+) men compared to COVID-19 (-) men, consistent with endothelial dysfunction. COVID-19 spike protein-positive cells could not be detected by immunofluorescence despite positive COVID-19 PCR. EPC levels from the COVID-19 (+) men were 0 cell/well and 1.167 cell/well respectively compared to mean EPCs from 34 COVID-19 (-) men with severe ED (4.04 cells/well), suggesting impaired endothelial function. CONCLUSIONS: Our study is the first to demonstrate the presence of COVID-19 virus in the penis long after the initial infection in humans. Our study also suggests that widespread endothelial cell dysfunction from COVID-19 infection can contribute to resultant erectile dysfunction. Future studies will evaluate novel molecular mechanisms of how COVID-19 infection leads to ED. IMPACT STATEMENT: COVID-19 can linger in the penis long after initial infection and can contribute to erectile dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL